
BlockCert: Certified Blockwise Extraction of Transformer
Mechanisms

Sandro Andric
sandro.andric@nyu.edu

November 2025

Abstract

Mechanistic interpretability aspires to reverse-engineer neural networks into explicit algo-
rithms, while model editing seeks to modify specific behaviours without retraining. Both areas
are typically evaluated with informal evidence and ad-hoc experiments, with few explicit guar-
antees about how far an extracted or edited model can drift from the original on relevant
inputs. We introduce BlockCert, a framework for certified blockwise extraction of transformer
mechanisms, and outline how a lightweight extension can support certified local edits. Given a
pre-trained transformer and a prompt distribution, BlockCert extracts structured surrogate
implementations for residual blocks together with machine-checkable certificates that bound
approximation error, record coverage metrics, and hash the underlying artifacts. We formalize a
simple Lipschitz-based composition theorem in Lean 4 that lifts these local guarantees to a global
deviation bound. Empirically, we apply the framework to GPT-2 small, TinyLlama-1.1B-Chat,
and Llama-3.2-3B. Across these models we obtain high per-block coverage and small residual
errors on the evaluated prompts, and in the TinyLlama setting we show that a fully stitched
model matches the baseline perplexity within ≈ 6 × 10−5 on stress prompts. Our results suggest
that blockwise extraction with explicit certificates is feasible for real transformer language models
and offers a practical bridge between mechanistic interpretability and formal reasoning about
model behaviour.

1 Introduction
Large language models (LLMs) have rapidly become core infrastructure for scientific research,
software engineering, and high-stakes decision support. At the same time, we still lack robust tools
for understanding, validating, and safely modifying their internal mechanisms. Mechanistic inter-
pretability aims to address this by reverse-engineering neural networks into human-understandable
components and circuits [2, 8, 10], but existing work is typically evaluated with bespoke visualizations
or small-scale experiments, without explicit, machine-checkable guarantees.

In parallel, the formal-methods community has developed powerful tools for proving properties
of neural networks [4, 5, 13], and the programming-languages community has shown how to ship
code with machine-checkable proofs of safety (proof-carrying code) [9]. However, these lines of
research have had limited impact on day-to-day interpretability practice. Verification tools often do
not scale to modern LLMs, and proof obligations are difficult to relate to the informal, circuit-level
stories that interpretability researchers actually use.

Goal. We would like a middle ground between fully formal verification and informal interpretability
stories: a workflow in which reverse-engineered mechanisms are accompanied by explicit certificates

1

that (i) precisely specify what has been extracted, (ii) quantify how closely the extract matches the
original network on concrete data, and (iii) can be automatically checked by any third party with
access to the artifacts. Ideally, these local certificates can then be composed to reason about global
model behavior.

This paper. We propose BlockCert, a framework for certified blockwise extraction of transformer
mechanisms. Given a pre-trained transformer, a set of prompts, and access to intermediate
activations, BlockCert produces, for each residual block:
1. a structured surrogate implementation B̂i in an explicit intermediate representation, and
2. a JSON certificate describing the data distribution used for extraction, the achieved approximation

error and coverage metrics, and cryptographic hashes of the associated artifacts (weights, probes,
masks).An independent verifier can re-load the artifacts, recompute the metrics, and check that the hashes

match. We also provide a composition mechanism that aggregates per-block certificates into a
full-model certificate summarizing stitched-model replay metrics.

We further formalize a simple global bound: if each baseline/stitched block pair (Bi, B̂i) is locally
εi-sound and the blocks are Li-Lipschitz, then the composed stitched model is globally bounded by
a Lipschitz-weighted sum of the εi, which specializes to a ∑

i εi bound when Li ≤ 1. This theorem
is mechanized in Lean 4 and instantiated for TinyLlama using empirical per-block error bounds.

Why blockwise? Transformers are naturally modular: the computation is organized into a stack
of residual blocks [11]. Many mechanistic interpretability techniques operate at the block level (e.g.
activation patching, MLP feature analysis), as do many model-editing methods that target specific
layers [6, 7, 14]. By focusing on per-block extraction with quantitative guarantees, BlockCert
aims to produce artifacts that are simultaneously:
• close to the original computation on a specified input distribution,
• simple enough to inspect and modify,
• and accompanied by machine-checkable evidence of correctness.

Contributions. Our main contributions are: (1) we formalize the problem of blockwise extraction
for transformers and propose BlockCert, a pipeline that produces explicit surrogate blocks
together with JSON certificates recording per-block approximation error, coverage metrics, and
cryptographic hashes of the underlying artifacts; (2) we introduce simple but practical coverage
notions (activation, path, and loss coverage) that quantify how much of a block’s behavior on a
given prompt set is explained by the surrogate, and integrate these into a certificate format and
verification tool; (3) in a separate Lean 4 development, we prove a global composition theorem
showing that if each (Bi, B̂i) pair is locally bounded by εi and blocks are Li-Lipschitz, then the fully
composed stitched model is globally bounded by a Lipschitz-weighted sum of the εi, which reduces
to ∑

i εi when Li ≤ 1, and we instantiate this theorem using empirical error bounds from TinyLlama
block certificates and stitched-model perplexity on stress prompts; and (4) we empirically evaluate
BlockCert on GPT-2 small, TinyLlama-1.1B-Chat, and Llama-3.2-3B, obtaining high coverage
(often ≥ 0.94 and sometimes 1.0) and small approximation errors, and showing that for TinyLlama
the stitched model matches the baseline perplexity within ≈ 6 × 10−5 on challenging prompts.

Our implementation is released as an open-source Python package. To avoid confusion with
historical naming, we refer to the method as BlockCert throughout this paper.

2

Model + prompts → Block traces → IR blocks + metrics
↓

Extraction / edit certificates

Figure 1: High-level BlockCert/BlockCert-Edit workflow. Given a pre-trained transformer
and a prompt distribution, we record block-level traces, construct IR surrogates with local error and
coverage metrics, and package these into machine-checkable certificates. BlockCert-Edit applies
simple local edits (e.g., scaling or swapping mechanisms) and produces analogous edit certificates
on the same prompt distribution.

2 Background And Problem Setup

2.1 Transformers And Residual Blocks

We consider standard decoder-only transformer language models [1, 11], which map a sequence
of tokens (x1, . . . , xT) to logits over the vocabulary at each position. The computation proceeds
through a stack of L residual blocks. Let x

(0)
t ∈ Rd denote the token embedding at position t, and

let x
(ℓ)
t be the residual stream at layer ℓ. A typical block has the form

x
(ℓ+1)
t = x

(ℓ)
t + MLPℓ

(
x

(ℓ)
t

)
+ Attnℓ

(
x

(ℓ)
1:T

)
, (1)

with pre- or post-layer normalization and model-specific details.
We write Bℓ for the function mapping x

(ℓ)
1:T to x

(ℓ+1)
1:T . The full model is the composition

F = BL−1 ◦ · · · ◦ B0 ◦ E, where E is the embedding and positional encoding.

2.2 Mechanistic Interpretability And Editing

Mechanistic interpretability aims to understand neural networks by decomposing them into circuits
of features and connections [2, 10]. Recent work has identified circuits in vision and language
models, studied superposition and polysemantic neurons, and proposed tools for tracing and editing
mechanisms [8, 15]. Model-editing methods such as ROME [6], MEMIT [7], and subsequent
surveys [12, 14] modify parameters of pre-trained LLMs to update specific facts or behaviors without
full retraining.

These approaches provide compelling evidence that specific mechanisms can be isolated and
manipulated. However, they usually lack explicit guarantees that the edited or extracted mechanism
faithfully reproduces the original network across a clearly specified set of inputs. Moreover,
interpretability artifacts are rarely packaged in a way that allows independent verification.

2.3 Neural Network Verification And Proof-Carrying Code

Formal verification of neural networks aims to prove properties such as robustness or safety under
input perturbations [4, 5, 13]. Tools such as Reluplex, Marabou, and α, β-CROWN combine SMT
solving and linear bound propagation to derive provable guarantees for moderately sized models.
However, these methods typically treat the network as a monolithic object and reason about
worst-case behavior under carefully specified constraints.

In programming languages, proof-carrying code (PCC) [9] showed how to ship low-level code
together with a machine-checkable proof that it satisfies a given safety policy. The host system verifies
the proof before executing the code and does not need to trust the code producer. BlockCert
takes inspiration from PCC: instead of shipping general-purpose proofs, we attach certificates to
extracted mechanisms, which can be checked automatically by a lightweight verifier.

3

2.4 Blockwise Extraction Problem

Fix a pre-trained transformer with blocks B0, . . . , BL−1. We assume access to:
• the model weights,
• an instrumentation mechanism that records intermediate activations for a set of prompts P,
• and a target block index ℓ.

For block ℓ, we define a trace dataset:

Dℓ =
{
(x(ℓ)

1:T , x
(ℓ+1)
1:T , mℓ)

∣∣ prompt p ∈ P
}
, (2)

where mℓ contains any additional discrete information about the block’s computation (e.g. attention
masks, head-level gating decisions). The blockwise extraction problem is:

Given (Bℓ, Dℓ), construct an explicit surrogate implementation B̂ℓ and a certificate Cℓ

such that B̂ℓ approximates Bℓ on Dℓ according to quantitative metrics recorded in Cℓ,
and such that Cℓ can be automatically re-verified from the released artifacts.

The next sections describe our intermediate representation, extraction algorithm, and certificate
semantics.

3 BlockCert Intermediate Representation

3.1 Design Goals

The BlockCert intermediate representation (IR) is designed to satisfy three constraints:
1. Expressive enough to exactly represent standard transformer blocks.
2. Simple enough to be replayed by a small, auditable interpreter.
3. Stable under extraction: the mapping from (Bℓ, Dℓ) to B̂ℓ should be well-conditioned.

At a high level, the IR mirrors the usual decomposition of a transformer block into attention,
MLP, and residual components, but flattens model-specific details into explicit weight tensors and
masks stored in .npz files:
• attention weights (WQ, WK , WV , WO),
• MLP weights (W1, W2) and biases,
• layer norm parameters,
• an explicit attention mask Mℓ encoding causal structure and any additional head- or token-level

gating.
In our experiments we instantiate this IR for standard decoder-only architectures (GPT-2

small, TinyLlama-1.1B-Chat, Llama-3.2-3B). For GPT-2 we follow the HuggingFace GPT2Model
implementation with post-embedding layer normalization and a causal attention mask. For Llama-
family models we match the LlamaAttention module, including pre-layer-normalization, rotary
position embeddings (RoPE) via stored cos/sin tables and position ids, and multi-query attention
with num_heads and num_key_value_heads. The interpreter is implemented as a pure Python
function that applies these linear and elementwise operators in a fixed order, without any hidden
control flow, so that the behavior of B̂ℓ is determined entirely by the released weight and mask
tensors.

Extraction procedure in our experiments. In all experiments we use the simplest instantiation
of the extraction map (Bℓ, Dℓ) 7→ B̂ℓ: the surrogate B̂ℓ has the same architecture as Bℓ, with weights
copied directly into the IR tensors and masks, positional tables, and bias tensors derived from

4

a single traced run on Dℓ. We do not perform any additional fitting, pruning, or distillation;
residual errors arise only from numerical differences between the native implementation and the IR
interpreter.

3.2 Empirical Local Soundness And Coverage

Let B̂ℓ be an IR block and let Dℓ be the trace dataset. We define empirical local soundness and
coverage metrics on Dℓ as follows.

Per-token error. For each traced prompt p ∈ P and token position t, we compute the per-token
residual error

eℓ(p, t) =
∥∥x̂

(ℓ+1)
t − x

(ℓ+1)
t

∥∥
2, (3)

where x̂
(ℓ+1)
t is produced by B̂ℓ when replayed on the recorded input x

(ℓ)
1:T . We define:

εℓ = max
(p,t)

eℓ(p, t), (4)

MAEℓ = 1
|Dℓ|

∑
(p,t)

eℓ(p, t). (5)

Activation coverage. We fix a small threshold τact (e.g. 10−2) and define activation coverage as

covact(ℓ) = 1
|Dℓ|

∑
(p,t)

1
[
eℓ(p, t) ≤ τact

]
. (6)

Intuitively, this is the fraction of tokens for which the block output is reproduced up to a small
numerical tolerance.

Path coverage. We define path coverage as the fraction of traced tokens for which all discrete
control decisions (e.g. attention masks, head-level gating, conditional branches) match exactly
between Bℓ and B̂ℓ. This is computed by replaying B̂ℓ with instrumented hooks that compare its
mask and gating tensors to those recorded in mℓ.

Loss coverage. Finally, we measure the effect of the block approximation on the model’s token-
level loss for the traced prompts. Let ℓbase(p, t) be the negative log-likelihood of the target token
under the original model, and ℓstitched(p, t) the loss when block ℓ is replaced by B̂ℓ while all other
blocks remain unchanged. We define the per-token loss difference

∆ℓℓ(p, t) =
∣∣ℓstitched(p, t) − ℓbase(p, t)

∣∣ (7)

and the loss coverage

covloss(ℓ) =
∑

(p,t) ℓbase(p, t) · 1[∆ℓℓ(p, t) ≤ τloss]∑
(p,t) ℓbase(p, t) , (8)

where τloss is a small threshold (e.g. 10−3). This measures what fraction of the baseline loss is
accounted for by tokens whose loss is essentially unaffected by replacing Bℓ with B̂ℓ.

5

Certified blocks. A block is considered certified at level (αact, αloss) if

covact(ℓ) ≥ αact, (9)
covloss(ℓ) ≥ αloss. (10)

In our experiments we typically use αact = 0.94 and αloss = 0.9 for large models, and occasionally
obtain αact = 1.0 on stress prompts for some blocks. Because εℓ and the coverage metrics are
computed only on the finite trace set Dℓ, these certificates express an empirical local soundness
guarantee rather than a universal bound over all possible inputs.

4 Certificates And Verification

4.1 Certificate Format

For each extracted block B̂ℓ, we emit a JSON certificate containing:
• metadata: model name, block index, prompt set description, thresholds (τact, τloss) and policies

(αact, αloss);
• metrics: εℓ, MAEℓ, activation, path, and loss coverage;
• artifact digests: SHA-256 hashes of the weight, probe, mask, and bias tensors (stored in .npz

files);
• a declaration that the block is certified (or not) under the specified policy.

Certificates live alongside their corresponding artifacts, each containing IR weights, probes,
masks, per-block metrics, and a JSON certificate.

4.2 Verification Tool

We provide a small Python CLI verification tool that replays certificates and checks that:
1. the SHA-256 hashes of the given artifacts match those recorded in the certificate;
2. re-computing the metrics using the current interpreter and thresholds reproduces the values

stored in the certificate (up to small numerical tolerances);
3. the certified/not-certified status is consistent with the metrics and policy.

For example, on a simple sanity-check experiment, the verifier recomputes the total residual
ε from the released artifacts and checks that activation and loss coverage meet the certificate’s
thresholds, confirming that the certificate faithfully summarizes the underlying experiment.

4.3 Full-Model Certificates

We also provide a mechanism for aggregating per-block certificates into a full-model certificate. For
a given model and prompt set, we:
1. stitch in the extracted blocks for a chosen subset of layers;
2. replay the full model on the prompts, computing per-layer mean absolute error (MAE) between

baseline and stitched residual streams;
3. compute baseline and stitched perplexities on the prompt set;
4. construct a JSON certificate that lists all referenced block certificate hashes and records the

global metrics.
For TinyLlama, this process produces a full-model certificate summarizing the per-layer MAE

(mean ≈ 0.38, worst layer ≈ 2.03, max residual ≈ 2.13 on stress prompts) and the negligible
difference in perplexity between baseline and stitched models (Section 6.5).

6

4.4 Certificates Versus Formal Proofs

Certificates, as produced by our tooling, are replayable, hash-tied empirical summaries. They state
that for a specific model checkpoint, prompt distribution, and interpreter version, re-running the
computation yields the same metrics (errors, coverage, perplexity) and artifact hashes. In contrast,
a formal proof—such as the composition theorem in Section 5 and its Lean 4 formalization—is a
universal statement over a specified mathematical model (e.g. all x ∈ X under Lipschitz assumptions).
Our block and full-model certificates should therefore be read as data-restricted evidence that the
hypotheses of such theorems hold on the traced distributions, not as global guarantees for all future
inputs.

5 Global Composition Theorem

5.1 Statement

We now describe a simple global error bound that connects per-block local soundness (universally
quantified over x ∈ X) to total model error.

Let X be a normed vector space and let Bi : X → X and B̂i : X → X be the baseline and
extracted blocks for i = 0, . . . , L − 1. Here the index i plays the same role as the layer index ℓ used
in Section 3.2. Define the full models

F = BL−1 ◦ · · · ◦ B0, (11)
F̂ = B̂L−1 ◦ · · · ◦ B̂0. (12)

Theorem 1 (Global Composition). Suppose that:
1. (Local soundness) For each i there exists εi ≥ 0 such that

∥B̂i(x) − Bi(x)∥ ≤ εi for all x ∈ X. (13)

2. (Lipschitz blocks) For each i there exists Li ≥ 0 such that both Bi and B̂i are Li-Lipschitz with
respect to the norm ∥ · ∥.

Then for all x ∈ X,

∥F̂ (x) − F (x)∥ ≤
L−1∑
i=0

(
εi

L−1∏
j=i+1

Lj

)
. (14)

A detailed proof sketch and the full Lean 4 formalization are provided in Appendix A.

5.2 Formalization And Instantiation

We formalize Theorem 1 in Lean 4 in a separate module, GlobalBound.lean. The proof uses
standard results about composition of Lipschitz functions and is parameterized over the norm and
the set of blocks.

For real transformer models, we cannot presently prove that all blocks are globally 1-Lipschitz
with respect to a useful norm over the full input space. Instead, we treat the Lipschitz property as
a modeling assumption and instantiate the theorem using empirical local soundness bounds derived
from block certificates, together with simple analytic Lipschitz upper bounds computed from the IR
weights and local ℓ2 Lipschitz bounds certified for selected TinyLlama MLP sublayers (Section 6.6).

7

In particular, given per-block constants {Li} and empirical error bounds {εi}, Theorem 1 yields a
global bound of the form

∥F̂ (x) − F (x)∥ ≤
L−1∑
i=0

(
εi

L−1∏
j=i+1

Lj

)
,

which reduces to the familiar ∑
i εi bound in the special case Li ≤ 1 for all i.

For TinyLlama-1.1B-Chat, we:
• compute empirical per-block error bounds εi over a suite of stress prompts, using the per-token

residual norms described in Section 3.2;
• plug these εi into the Lean development to obtain a bound on ∥F̂ (x) − F (x)∥ for x drawn from

the traced distribution;
• empirically verify that the stitched model and baseline produce nearly identical perplexity on the

same prompts (Section 6.5).

Scope. It is important to emphasize that this global story is conditional. We do not claim a
formal guarantee for all possible inputs of a real LLM. Instead, our theorem and experiments
support a plausible global safety story under standard Lipschitz assumptions and empirical error
bounds. Strengthening these assumptions—for example by deriving certified local Lipschitz bounds
for specific blocks—is an important direction for future work.

6 Experiments
We now instantiate BlockCert on three settings: GPT-2 small, TinyLlama-1.1B-Chat, and Llama-
3.2-3B. Extraction artifacts and certificates for all experiments are available in the supplementary
materials.

6.1 GPT-2 Small: Block 0 And Multi-Block Sweep

Setup. We next apply BlockCert to GPT-2 small. We extract block 0 with a small prompt set
and then run a multi-block sweep that covers a range of blocks under different prompt configurations.
Experimental artifacts include per-block and multi-block metrics summaries and sample certificates.

Results. For the baseline configuration (two prompts), the extraction metrics report:
• "prompts_evaluated": 2,
• "certified_all": true,
• mean extraction error ≈ 2.32 × 10−7 for certified blocks,
• mean activation coverage ≈ 0.9999999999998883.
Sample certificates can be independently verified using the provided verification tool. Causal
attention mask behavior can be validated through independent replay.

These results show that BlockCert can recover shallow GPT-2 blocks with extremely high
fidelity on the tested prompts, effectively matching the original computation.

6.2 TinyLlama-1.1B-Chat: Blockwise Extraction

Setup. We evaluate BlockCert on TinyLlama-1.1B-Chat [3] using both a full sweep and a
targeted stress-test configuration. The default TinyLlama prompt set consists of four short English
prompts about extraction, audits, verifiers, and causal masks (tokenized lengths 23, 21, 24, 22,
totalling 90 tokens). The extended stress set comprises ten hand-designed prompts mixing long-form

8

technical writing, multilingual text, safety-related content, legal contracts, poetry, code, translation,
and quantitative reasoning (tokenized lengths between 22 and 36, totalling 251 tokens). Artifacts
for each block include IR weights, probes, masks, per-block metrics, and a JSON certificate. The
aggregate metrics summarize per-block performance and identify, for each block, the best prompt
index.

Results. Across the full 22-layer residual stack (full-sweep configuration), activation coverage
remains high: The extraction achieves mean activation coverage ≈ 1.0 for blocks 0–1, 12–14, 16–17,
and 21; ≈ 0.955 for most mid-depth blocks; and a worst case of ≈ 0.945 at block 15. Under the ten
stress prompts, the metrics report, for example:
• Block 5: best activation coverage ≈ 0.9722, mean extraction error ≈ 6.1 × 10−3.
• Blocks 0 and 10: activation coverage = 1.0, with ε ≈ 1.99×10−3 and ε ≈ 9.64×10−3, respectively.
Certificates for these blocks satisfy the activation and loss coverage policies (covact ≥ 0.94, covloss ≥
0.9), and the verifier confirms that all reported metrics meet the thresholds.

Failure case analysis (block 15). Block 15 is the deepest layer where activation coverage dips
noticeably (mean coverage ≈ 0.945 under the stress prompts, with a minimum of ≈ 0.91 on a
prompt containing a cluster of safety-trigger phrases). Inspection of the block-15 metrics shows that
the extraction error is concentrated on a small subset of tokens in this prompt, which also have
relatively large key/value norms and slightly lower attention margins. Nevertheless, loss coverage
remains 1.0 across all stress prompts, indicating that the extraction errors occur in regions of the
residual stream that have limited impact on token-level loss. We view this as an informative stress
case: even when coverage dips, the certificate quantifies where the extraction is struggling and shows
that the overall loss profile is robust.

6.3 Llama-3.2-3B: Cross-Model Replication

Setup. To test generalization across architectures, we apply the same extraction pipeline to Llama-
3.2-3B1, extracting blocks {0, 5, 10} on the same baseline and stress prompt sets as TinyLlama.
Artifacts share the same directory structure as in Section 6.2, but contain Llama-3.2-3B-specific
weights and traces.

Results. We obtain successful certificates for blocks 0, 5, 10 with activation and loss coverage
satisfying the same policy, and verification runs report total residuals on the order of 10−2 with both
activation and loss coverage above the default thresholds. The cross-model replication indicates
that the BlockCert extraction and certification procedure is not specific to TinyLlama and can
plausibly be applied to a broader range of decoder-only transformers.

6.4 Whole-Model Replay And Aggregated Certificate

Setup. We next study how per-block errors accumulate when multiple extracted blocks are
stitched back into TinyLlama. We construct a stitched model by replacing selected blocks with
their extracted counterparts, replay both the stitched model and the baseline on the stress prompts,
and record, for each of the 22 residual layers, the mean absolute error (MAE) between baseline
and stitched residual streams. A separate aggregation script then builds a composite full-model
certificate that lists the referenced block certificate hashes and the global replay metrics.

1Model card and weights from the official Llama 3.2 release.

9

Results. The full-model metrics contain 22 entries (one per residual layer). On the stress prompts
we observe:
• mean per-layer MAE ≈ 0.38,
• worst-layer MAE ≈ 2.03,
• maximum residual error (over all layers and tokens) ≈ 2.13.
These values are consistent with the per-block εi reported in the individual certificates.

6.5 Full-Block Perplexity Matching

Setup. Finally, we study whether a stitched TinyLlama model assembled entirely from extracted
blocks can match the baseline perplexity. We first run a full-block extraction that saves a snapshot
of each block’s weights in the IR format. We then replay the fully stitched TinyLlama on the stress
prompts, computing token-level losses and perplexities for both the baseline and stitched models.
Finally, we build a full-block certificate that hashes every block’s weight snapshot and the evaluation
file and records the resulting perplexity metrics.

Results. The evaluation reports average perplexities:

PPLbaseline ≈ 253.1618,

PPLstitched ≈ 253.1618,

∆PPL ≈ −6.0 × 10−5.

Within numerical accuracy, the stitched model and baseline have identical perplexity on the stress
prompts. This provides strong empirical evidence that the fully stitched TinyLlama, built from
extracted blocks, faithfully reproduces the original model on this distribution.

6.6 Empirical Generalization And Timing

Prompt-shift experiment. To probe generalization beyond the certification trace, we compare
TinyLlama block metrics between the default four-prompt set and the extended stress prompts for
blocks {0, 5, 10, 15, 20}. For each block we treat the base prompts as the certification distribution
(used to generate the block certificate) and recompute empirical error and coverage on the stress
prompts without changing the weights. Mean extraction error and activation coverage change only
slightly; for example:
• Block 0: mean error increases from 1.69 × 10−3 to 1.76 × 10−3, coverage remains 1.0.
• Block 5: mean error shifts from 6.57 × 10−3 to 6.07 × 10−3, coverage from 0.955 to 0.950.
• Block 15: mean error decreases from 2.66 × 10−2 to 2.38 × 10−2, coverage increases from 0.945 to

0.955.
All probed blocks remain above the certificate coverage thresholds on both prompt sets, though
these conclusions are still strictly trace-based rather than formal guarantees.

Semantic behavior preservation. We also perform a small semantic evaluation of the fully
stitched TinyLlama using a handful of human-written prompts (arithmetic questions, simple factual
statements, and yes/no queries). For each prompt we treat the baseline TinyLlama’s next-token
prediction as a semantic label and measure whether the stitched model produces the same token.
On this probe set, the stitched model matches the baseline on all prompts (next-token accuracy
= 1.0 for both), while both models occasionally disagree with the human-intended answers. The
full-block certificate records both the fidelity metric (stitched vs baseline accuracy) and the baseline

10

vs human accuracy, so that readers can distinguish between preservation of behavior and absolute
correctness on this semantic corpus.

Lipschitz estimates. To complement the empirical error bounds, we compute simple analytic
ℓ2 Lipschitz upper bounds for each TinyLlama block from the IR weight matrices (via spectral
norms) and log these in the full-block certificate as analytic_upper_bound entries. In a separate
verification environment with auto-LiRPA, we also certify local ℓ2 Lipschitz upper bounds for the
MLP sublayers of blocks {0, 5, 10, 15, 20} on an L2 ball of radius 1.0, obtaining values in the range
≈ 103–2×103. Combining these with the analytic attention bounds yields hybrid full-block Lipschitz
upper bounds Lblock ≤ (1+Kattn)·KMLP, which are logged in the certificate as hybrid_upper_bound
entries alongside the per-sublayer constants.

Summary table (selected blocks). Table 1 summarizes, for TinyLlama blocks {0, 5, 10, 15, 20},
the per-block extraction residual εi (worst-case per-token error), the analytic attention bound Kattn,
the auto-LiRPA-certified MLP Lipschitz upper bound KMLP, and the resulting hybrid full-block
bound Lblock. As expected, the hybrid bounds are quite loose (on the order of 105–106), reflecting
the large operator norms in LLM blocks; nevertheless, they provide a principled way to connect
local error bounds to a concrete, albeit conservative, global constant. Instantiating Theorem 1 with
these Lblock values and the εi from Table 1 yields a worst-case global bound that is many orders of
magnitude larger than the empirically observed maximum residual (≈ 2.13, Section 6.4), mirroring
the conservative gap between certified Lipschitz bounds and actual errors commonly reported in
neural network verification.

Table 1: Summary of TinyLlama Lipschitz-related quantities for selected blocks. The εi values are
per-block worst-case residuals from the extraction certificates on stress prompts; Kattn are analytic
attention bounds from the IR weights; KMLP are local ℓ2 Lipschitz upper bounds certified via
auto-LiRPA for the MLP sublayers (on an L2 ball of radius 1.0); and Lblock are the resulting hybrid
full-block bounds.

Block εi Kattn KMLP Lblock

0 ≈ 2.0 × 10−3 ≈ 5.7 × 102 ≈ 1.1 × 103 ≈ 6.0 × 105

5 ≈ 6.6 × 10−3 ≈ 1.5 × 102 ≈ 1.3 × 103 ≈ 2.1 × 105

10 ≈ 1.1 × 10−2 ≈ 1.2 × 102 ≈ 1.5 × 103 ≈ 1.8 × 105

15 ≈ 2.4 × 10−2 ≈ 1.0 × 102 ≈ 1.6 × 103 ≈ 1.6 × 105

20 ≈ 4.1 × 10−2 ≈ 2.6 × 102 ≈ 1.9 × 103 ≈ 4.9 × 105

Timing. We also measure wall-clock costs on a single MacBook-class machine (M-series chip,
24 GB RAM) using the MPS backend. On this setup, extracting TinyLlama blocks {0, 5, 10, 15, 20}
on the ten stress prompts (sequence length 256) takes about 30 seconds, while replaying the full-block
TinyLlama experiment on the same prompts takes about 16 seconds. This suggests that BlockCert
extraction and replay are practical in typical research environments without large-scale accelerator
clusters.

11

7 Certified Local Edits With BlockCert-Edit
We now outline how the BlockCert infrastructure supports certified local edits to specific mechanisms,
using a small refusal/safety case study. We treat these experiments as an illustration of how edit
certificates and the global bound can be instantiated, rather than as a full safety evaluation.

7.1 Refusal/Safety Corpus and Metrics

We construct a small refusal/safety corpus of 24 prompts with labels y ∈ {answer, refuse}: 12
benign tasks labeled answer (secure coding, responsible LLM usage, style/formatting, mental
health support, policy design, generic assistant behaviour), and 12 harmful requests labeled refuse
(ransomware instructions, content-filter bypass, self-harm methods, violence, privacy violations, and
illegal drugs). Each harmful prompt is phrased so that the desired behaviour is refusal with safe
guidance.

For a completion c we apply a simple heuristic classifier that scans for: (i) refusal markers
(e.g. “I’m sorry”, “I cannot”, “as an AI language model”) and (ii) obviously harmful markers (e.g.
“step-by-step instructions”, “here is how you can”, and task-specific keywords such as “ransomware”
or “self-harm”). Given a labeled example (x, y) and completions (cbase, cpatch) from the baseline
and patched models, we deem a completion correct if: for y = answer it contains neither refusal nor
harmful markers, and for y = refuse it contains refusal markers and no harmful markers. We report
answer accuracy (fraction of correct answer examples) and refuse accuracy (fraction of correct
refuse examples) for baseline vs patched models. A human-label pipeline mirrors this schema
but allows annotators to assign judgments from {answer, refuse, harmful, other}, aggregating
answer/refuse accuracies and harmful rates into the same metrics.

7.2 TinyLlama Block-15 MLP Scaling

We study semantic refusal behaviour on TinyLlama-1.1B-Chat by scaling the block-15 MLP residual
by a factor α so that the residual becomes α · MLP15(x) while the rest of the model is unchanged.
For each α, we generate greedy completions on the refusal/safety corpus, apply the classifier, and
compute answer/refuse accuracies before vs after the edit.

Table 2: Refusal vs answer correctness on the labeled refusal/safety corpus for TinyLlama-1.1B-Chat
under block-15 MLP scaling edits. The baseline (α = 1.0) almost never refuses harmful prompts
under our heuristic classifier; α ≈ 0.33 improves refusal accuracy while preserving benign answers.

MLP scale α Answer accuracy Refuse accuracy
1.0 ≈ 1.00 0.00
0.50 ≈ 1.00 ≈ 0.08
0.40 ≈ 1.00 ≈ 0.17
0.33 ≈ 1.00 0.25
0.25 ≈ 1.00 ≈ 0.17
0.00 ≈ 0.92 ≈ 0.33

Table 2 summarizes the results. The baseline model (no edit, α = 1.0) achieves near-perfect
answer accuracy on benign prompts but essentially never produces explicit refusals on harmful
prompts under this metric. As we decrease α, refusal accuracy rises while answer accuracy remains
high until α becomes very small. Around α ≈ 0.33 we see a promising sweet spot: answer accuracy

12

remains ≈ 1.0, while refusal accuracy rises to 0.25 (3/12 harmful prompts correctly refused). Deleting
the MLP entirely (α = 0.0) further improves refusal accuracy to 0.33 but starts to degrade benign
behaviour.

We designate α = 0.33 as a reference BlockCert-Edit patch for TinyLlama. An edit certificate
records the patch spec, dataset hash, and before-vs-after answer/refuse accuracies for this edit, as well
as human-label metrics on the same corpus. Using the block-15 activations and Lipschitz constants
described earlier, we can also instantiate the global bound for this patch on the traced region: the
local edit error at block 15 is εedit

15 ≈ 4.26, while the maximum deviation at the final hidden state is
maxx ∥F ′(x) − F (x)∥ ≈ 42.23, indicating an effective downstream Lipschitz amplification factor of
roughly 10×.

7.3 Llama-3.2-3B Refusal Behaviour

We apply the same refusal/safety corpus and classifier to Llama-3.2-3B, scaling the MLP in blocks
{0, 10, 15} with α ∈ {0, 0.5, 1.0}. Across all configurations, answer accuracy remains ≈ 1.0 and
refusal accuracy remains 0.0 under our heuristic: deleting or attenuating these MLP residuals leaves
both benign and harmful behaviour unchanged on this corpus. We view this as a deliberately
narrow probe rather than evidence that Llama-3.2-3B lacks refusal mechanisms: we did not search
over all blocks, heads, or feature directions, only a small set of MLP residuals at a fixed decoding
policy. From a BlockCert-Edit perspective, the value of this negative result is that it is exactly
reproducible: the patch specs and edit certificates document precisely which edits and metrics were
evaluated, and can be extended to broader search procedures in future work.

8 Discussion

8.1 Relation To Existing Interpretability Work

BlockCert is complementary to existing mechanistic interpretability techniques [2, 8, 10]. Where
most work focuses on identifying specific circuits or features, BlockCert focuses on representing
entire blocks in a structured IR and attaching quantitative certificates. One could imagine using
BlockCert-extracted blocks as a stabilized substrate on which to run more detailed circuit analyses
or automated tools for discovering sparse linear features.

Our coverage metrics currently operate at the level of residual norms and loss differences, not
high-level semantics. Extending certificates to incorporate semantic tests (e.g. targeted question-
answering behavior or calibration metrics) is an interesting direction.

8.2 Relation To Model Editing And Verification

Model editing methods such as ROME, MEMIT, and subsequent survey work can be applied
directly to BlockCert-extracted blocks, which are explicit weight tensors and masks amenable to
fine-grained manipulation. Certificates could then be used to document and bound the side-effects
of such edits on a specified prompt distribution.

Compared to full-blown neural network verification frameworks like Reluplex, Marabou, and
Beta-CROWN, BlockCert trades global, worst-case guarantees for scalable, distribution-specific
certificates that are cheap to verify. We view the two approaches as complementary: local certificates
could serve as inputs or abstractions for more powerful formal methods on subsystems where stronger
guarantees are needed.

13

8.3 Limitations

Our work has several important limitations:
• Distributional guarantees. Certificates are defined with respect to a finite set of prompts and

traced activations. They provide empirical guarantees on those traces, but say nothing about
unseen inputs or arbitrary distribution shift. We reported a small prompt-shift experiment for
TinyLlama blocks, where metrics remain stable between base and stress prompts, but systematic
generalization studies across tasks and distributions remain future work.

• Assumed Lipschitzness. The global composition theorem relies on blocks satisfying Lipschitz
bounds with respect to a chosen norm. We do not currently provide global, all-input Lipschitz
proofs for real LLMs. Instead, we combine analytic per-block ℓ2 Lipschitz upper bounds (derived
from IR weights) with local ℓ2 bounds certified via auto-LiRPA for the TinyLlama MLP sublayers
of selected blocks (Section 6.6), and use these to derive hybrid full-block Lipschitz upper bounds
that are logged in the certificates. Extending such certified bounds to full blocks over richer
regions (e.g. trace-derived boxes) and to additional architectures remains an important direction
for future work.

• Scope of interpretability. Our IR makes the block computation explicit but does not by itself
guarantee human-understandable semantics. Understanding what the extracted weights mean
still requires interpretive work.

• Scalability. While our experiments cover GPT-2 small, TinyLlama-1.1B-Chat, and Llama-3.2-
3B, scaling to much larger models will require further engineering, particularly for trace collection
and storage.

9 Conclusion
We introduced BlockCert, a framework for certified blockwise extraction of transformer mecha-
nisms. For each residual block, BlockCert produces a structured surrogate implementation and a
machine-checkable certificate that records approximation error, coverage metrics, and cryptographic
hashes of the underlying artifacts. We formalized a simple composition theorem in Lean 4, showing
how local error bounds can be combined to yield a global bound under standard Lipschitz assump-
tions, and instantiated this theorem for TinyLlama using empirical per-block metrics. Across these
models, we obtained high coverage and small residuals, and demonstrated that a fully stitched
TinyLlama matches the baseline perplexity within ≈ 6 × 10−5 on stress prompts.

We hope that BlockCert-style certificates can become a standard accompaniment to mech-
anistic interpretability artifacts and model edits, providing a light-weight but explicit account of
what has been reverse-engineered or changed. Future work includes integrating stronger formal
guarantees, extending certificates to semantic properties, and scaling to larger and more diverse
LLMs.

Broader Impact Statement

Our work provides tools for extracting and certifying mechanisms inside transformer language
models. Such tools could help improve transparency and safety by enabling independent scrutiny of
model internals and by documenting the effects of model edits. At the same time, more powerful
reverse-engineering tools may lower the barrier to reusing or repurposing models without the original
developer’s oversight, including for harmful applications.

We do not release any new models; we only study widely available open-source checkpoints (GPT-
2 small, TinyLlama-1.1B-Chat, Llama-3.2-3B). All experiments are performed on text prompts

14

without personally identifiable information. Nevertheless, we encourage users of BlockCert
to carefully consider downstream use cases and to follow existing best practices for responsible
deployment of large language models.

Appendix A. Proof Sketch of Theorem 1
For completeness, we record a standard proof sketch of Theorem 1. Let x(i) and x̂(i) denote the
intermediate representations after i blocks of F and F̂ , respectively. At each step,

∥x̂(i+1) − x(i+1)∥ = ∥B̂i(x̂(i)) − Bi(x(i))∥
≤ ∥B̂i(x̂(i)) − B̂i(x(i))∥ + ∥B̂i(x(i)) − Bi(x(i))∥
≤ Li∥x̂(i) − x(i)∥ + εi,

using Li-Lipschitzness of B̂i and the local error bound at x(i). Unrolling the recurrence yields

∥x̂(L) − x(L)∥ ≤
L−1∑
i=0

(
εi

L−1∏
j=i+1

Lj

)
,

which implies the desired inequality. The accompanying Lean 4 development mirrors this argument
in a fully formal setting.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are

few-shot learners. Advances in Neural Information Processing Systems, 33, 2020.

[2] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Chris Olah. Toy models of
superposition. arXiv preprint arXiv:2209.10652, 2022.

[3] Albert Jiang et al. Tinyllama: An open-source small language model. Technical Report, 2023.
Model and code available at https://github.com/jzhang38/TinyLlama.

[4] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. Computer Aided Verification (CAV),
2017.

[5] Guy Katz, Derek Huang, David Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakkar, Haoze Wu, Clark Barrett, et al. The Marabou framework for
verification and analysis of deep neural networks. In Computer Aided Verification (CAV), 2019.

[6] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Advances in Neural Information Processing Systems, 2022.

[7] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-
editing memory in a transformer. In International Conference on Learning Representations,
2023.

15

https://github.com/jzhang38/TinyLlama

[8] Neel Nanda, Lawrence Chan, Tom Lieberum, Johannes Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In International Conference on Learning
Representations, 2023.

[9] George C. Necula. Proof-carrying code. In Conference Record of POPL, 1997.

[10] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Nick Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3), 2020.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[12] Shangwen Wang et al. Knowledge editing for large language models: A survey. arXiv preprint
arXiv:2310.16218, 2023.

[13] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In Advances in Neural Information Processing Systems, 2021.

[14] Yao Yao, Ningyu Zhang, Chuanqi Tao, Fei Huang, and Huajun Chen. Editing large language
models: Problems, methods, and opportunities. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

[15] Fan Zhang et al. Towards best practices of activation patching in language models. OpenReview
preprint, 2024.

16

	Introduction
	Background And Problem Setup
	Transformers And Residual Blocks
	Mechanistic Interpretability And Editing
	Neural Network Verification And Proof-Carrying Code
	Blockwise Extraction Problem

	BlockCert Intermediate Representation
	Design Goals
	Empirical Local Soundness And Coverage

	Certificates And Verification
	Certificate Format
	Verification Tool
	Full-Model Certificates
	Certificates Versus Formal Proofs

	Global Composition Theorem
	Statement
	Formalization And Instantiation

	Experiments
	GPT-2 Small: Block 0 And Multi-Block Sweep
	TinyLlama-1.1B-Chat: Blockwise Extraction
	Llama-3.2-3B: Cross-Model Replication
	Whole-Model Replay And Aggregated Certificate
	Full-Block Perplexity Matching
	Empirical Generalization And Timing

	Certified Local Edits With BlockCert-Edit
	Refusal/Safety Corpus and Metrics
	TinyLlama Block-15 MLP Scaling
	Llama-3.2-3B Refusal Behaviour

	Discussion
	Relation To Existing Interpretability Work
	Relation To Model Editing And Verification
	Limitations

	Conclusion

